262 research outputs found

    Mitigation Strategies and Costs of Climate Protection: The effects of ETC in the hybrid Model MIND

    Get PDF
    MIND is a hybrid model incorporating several energy related sectors in an endogenous growth model of the world economy. This model structure allows a better understanding of the linkages between the energy sectors and the macro-economic environment. We perform a sensitivity analysis and parameter studies to improve the understanding of the economic mechanisms underlying opportunity costs and the optimal mix of mitigation options. Parameters representing technological change that permeates the entire economy have a strong impact on both the opportunity costs of climate protection and on the optimal mitigation strategies, e.g. parameters in the macro-economic environment and in the extraction sector. Sector-specific energy technology parameters change the portfolio of mitigation options but have only modest effects on opportunity costs, e.g. learning rate of the renewable energy technologies. We conclude that feedback loops between the macro-economy and the energy sectors are crucial for the determination of opportunity costs and mitigation strategies.Endogenous technological change, Climate change mitigation costs, Integrated assessment, Growth model, Energy sector, Integrated assessment

    REMIND-D: A Hybrid Energy-Economy Model of Germany

    Get PDF
    This paper presents a detailed documentation of the hybrid energy-economy model REMIND-D. REMIND-D is a Ramsey-type growth model for Germany that integrates a detailed bottom-up energy system module, coupled by a hard link. The model provides a quantitative framework for analyzing long-term domestic CO2 emission reduction scenarios. Due to its hybrid nature, REMIND-D facilitates an integrated analysis of the interplay between technological mitigation options in the different sectors of the energy system as well as overall macroeconomic dynamics. REMIND-D is an intertemporal optimization model, featuring optimal annual mitigation effort and technology deployment as a model output. In order to provide transparency on model assumptions, this paper gives an overview of the model structure, the input data used to calibrate REMIND-D to the Federal Republic of Germany, as well as the techno-economic parameters of the technologies considered in the energy system module.Hybrid Model, Germany, Energy System, Domestic Mitigation

    Influence of Glycerol on the polymorphic Behavior of solid Triglyceride Nanoparticles stabilized with Poly(vinyl Alcohol)

    Get PDF
    Colloidal dispersions of lipids, e.g. triglycerides, are under intensive investigation as drug delivery systems. Solid triglyceride nanoparticles exist in different polymorphic modifications. The aim of this study was to investigate the effects of the addition of glycerol, which can be used for the isotonization of such dispersions, on the polymorphic behavior of poly(vinyl alcohol)-stabilized tripalmitin nanoparticles. Glycerol was added to the nanoparticle dispersions at different concentrations in the heat. The dispersions were investigated for their thermal behavior and storage stability with regard to particle size and polymorphic transitions of the triglyceride matrix, using photon correlation spectroscopy, differential scanning calorimetry and X-ray diffraction. The addition of glycerol led to a decreasing crystallization temperature of the nanoparticles and slowed down the polymorphic transition into the stable ÎČ-modification

    Linking energy system and macroeconomic growth models

    Get PDF
    We compare two alternative approaches for coupling macroeconomic growth models (MGM) and energy system models (ESM). The hard-link approach integrates the techno-economics of the ESM completely into the MGM and solves one highly complex optimisation problem. The soft-link leaves the two models separate and energy supply functions are integrated into the MGM that are derived from the optimal solution of the ESM. The energy supply functions relate the price of energy computed with the ESM to the quantity of energy computed with the MGM. An iterative process exchanges price-quantity information between the models. Hence, the soft-link leads to an energy market equilibrium. But energy supply functions do not consider variable interest rates that influence the energy supply functions. This is due to the fact that ESMs are partial models that assume an exogenous interest rate; however the interest rate is computed endogenously in MGMs. This missing interaction leads to a capital market dis-equilibrium in the soft-link compared to the hard-link approach inducing a mis-allocation of investments. Extending the soft-link approach by also considering the time variable interest rate of the MGM does not improve the results. Though the computational complexity is greater the hard-link approach assures simultaneous energy and capital market equilibriu

    Tackling long-term climate change together: The case of flexible CCS and fluctuating renewable energy

    Get PDF
    AbstractThe present study aims at shedding light into the interaction of fluctuating renewables and the operational flexibility of postcombustion capture plants in the framework of a long-term model. We developed a model of the electricity sector taking into account both long-term investment time scales to represent plant fleet development under economic and climate constraints as well as short time scales to consider fluctuations of demand and renewable energy sources. The LIMES model allows us to determine the respective roles of renewables and CCS in climate change mitigation efforts within the electricity sector. Furthermore, we assess the influence of natural gas prices on fuel choice and investigate the shares of competing CCS approaches in the technology mix. We find that the optimal technology mix includes large shares of renewables and simultaneously different competing CCS technologies, depending on emission constraints and fuel prices

    Boom or Bust? Mapping Out the Known Unknowns of Global Shale Gas Production Potential

    Get PDF
    To assess the global production costs of shale gas, we combine global top-down data with detailed bottom-up information. Studies solely based on top-down approaches do not adequately account for the heterogeneity of shale gas deposits and hence, are unlikely to appropriately capture the extraction costs of shale gas. We design and provide an expedient bottom-up method based on publicly available US data to compute the levelized costs of shale gas extraction. Our results indicate the existence of economically attractive areas but also reveal a dramatic cost increase as lower-quality reservoirs are exploited. At the global level, our best estimate suggests that, at a cost of 6 US$/GJ, only 39% of the technically recoverable resources reported in top-down studies should be considered economically recoverable. This estimate increases to about 77% when considering an optimistic recovery of resources but could be lower than 12% when considering pessimistic ones. The current lack of information on the heterogeneity of shale gas deposits as well as on the development of future production technologies leads to significant uncertainties regarding recovery rates and production costs. Much of this uncertainty may be inherent, but for energy-system planning purposes, with or without climate change mitigation policies, it is crucial to recognize the full ranges of recoverable quantities and costs

    Coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum

    Get PDF
    The global phase-out of coal by mid-century is considered vital to the Paris Agreement to limit warming well-below 2 \ub0C above pre-industrial levels. Since the inception of the Powering Past Coal Alliance (PPCA) at COP23, political ambitions to accelerate the decline of coal have mounted to become the foremost priority at COP26. However, mitigation research lacks the tools to assess whether this bottom-up momentum can self-propagate toward Paris alignment. Here, we introduce dynamic policy evaluation (DPE), an evidence-based approach for emulating real-world policy-making. Given empirical relationships established between energy-economic developments and policy adoption, we endogenize national political decision-making into the integrated assessment model REMIND via multistage feedback loops with a probabilistic coalition accession model. DPE finds global PPCA participation <5% likely against a current policies backdrop and, counterintuitively, foresees that intracoalition leakage risks may severely compromise sector-specific, demand-side action. DPE further enables policies to interact endogenously, demonstrated here by the PPCA’s path-dependence to COVID-19 recovery investments
    • 

    corecore